Problem Set 4 - part 2
5. Consider the existence of general competitive equilibrium in a pure exchange economy subject to excise tax on net purchases. All taxes are rebated as lump sums equally to all households. This is the model of Starr's General Equilibrium Theory, problem 12.2 (similar in two editions).
We use the following notation:
p is the N -dimensional nonnegative price vector,
x^{i} is the N-dimensional nonnegative vector of household $i^{\prime} s$ consumption, x^{i} is a decision variable for i
r^{i} is the N -dimensional nonnegative vector of i^{\prime} endowment
$D^{i}(p)\left(=x^{i}\right)$ is the N-dimensional vector of $i^{\prime} s$ consumption as a function of p, based on i's budget which is denoted $\mathrm{M}^{\mathrm{i}}(\mathrm{p})$
\#H is the finite integer number of households in the economy consisting of the set H
τ is the N -dimensional nonnegative vector of excise tax rates (on net purchases) in the economy

T is the transfer of tax revenue to the typical household.
The budget constraint is $p \cdot x^{i}+\tau \cdot\left(x^{i}-r^{i}\right)_{+}=M^{i}(p)$ where
$M^{i}(p)=p \cdot r^{i}+T$ where $T=(1 / \# H) \Sigma_{h \in H} \tau \cdot\left(x^{h}-r^{h}\right)_{+}$
where the notation $(\cdot)_{+}$indicates the vector consisting of the nonnegative co-ordinates of (\cdot) with zeroes replacing the negative co-ordinates of (.). The household is assumed to treat T parametrically --- as independent of his own expenditure decisions.
Please make the usual assumptions about continuity, convexity, monotonicity of preference, and adequacy of income.

Will a Walrasian competitive equilibrium exist generally in the economy with excise taxation? Explain why or why not. State any additional assumptions you need. Feel free to cite well-known results.
6. Consider a Walrasian competitive general equilibrium in the model of problem 5 above. Will the allocation be Pareto efficient?

